CS 383

HW 5 Solutions

1. Design a PDA to accept the strings in $(0+1)^{*}$ such that no prefix has more 1 's than 0 's. 01001011001 is a string in this language. Say whether your PDA accepts by final state or empty stack.
$1,0 \mid \varepsilon$
0,0|00

Accepts by final state.
2. Design a PDA to accept $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$. Say whether this accepts by final state or empty stack.

Accepts by empty stack
3. Design a PDA to accept $\left\{0^{n} 1^{m} \mid n<=m<=2 n\right\}$

4. Convert the following grammar into a PDA that accepts by empty stack.

$$
\begin{aligned}
& S=0 S 1 \mid A \\
& A=>1 A 0|S| \varepsilon \\
& \text { 1,1|ع } \\
& 0,0 \mid \varepsilon \\
& \varepsilon, S \mid O S 1 \\
& \varepsilon, S \mid A \\
& \varepsilon, A \mid 1 A 0 \\
& \varepsilon, A \mid S
\end{aligned}
$$

5. Here is a PDA that accepts strings in $(0+1)^{*}$ with the same number of 0 's and 1 's. This PDA accepts by empty stack. Chomsky's algorithm gives a grammar equivalent to this PDA, with grammar symbols of the form [pXq]. Give a derivation in this grammar for the string 0101.

$$
\begin{aligned}
& \text { Derivation: } \\
& \begin{aligned}
\text { Start } & =>\left[P Z_{0} \mathrm{Q}\right] \\
& =>0[P O P]\left[P Z_{0} \mathrm{Q}\right] \\
& =>01\left[P Z_{0} \mathrm{Q}\right] \\
& =>010[P O P]\left[P Z_{0} \mathrm{Q}\right] \\
& =>0101\left[P Z_{0} \mathrm{Q}\right] \\
& =>0101
\end{aligned}
\end{aligned}
$$

